Study Guide and Intervention

Factoring Trinomials: $x^2 + bx + c$

Factor $x^2 + bx + c$ To factor a trinomial of the form $x^2 + bx + c$, find two integers, m and n, whose sum is equal to b and whose product is equal to c.

Factoring $x^2 + bx + c$ $x^2 + bx + c = (x + m)(x + n)$, where m + n = b and mn = c.

Example 1

Factor each trinomial.

a.
$$x^2 + 7x + 10$$

In this trinomial, b = 7 and c = 10.

Factors of 10	Sum of Factors
1, 10	11
2, 5	7

Since 2 + 5 = 7 and $2 \cdot 5 = 10$, let m = 2and n = 5.

$$x^2 + 7x + 10 = (x + 5)(x + 2)$$

b.
$$x^2 - 8x + 7$$

In this trinomial, b = -8 and c = 7. Notice that m + n is negative and mn is positive, so m and n are both negative. Since -7 + (-1) = -8 and (-7)(-1) = 7,

$$m = -7$$
 and $n = -1$.
 $x^2 - 8x + 7 = (x - 7)(x - 1)$

Example 2

Factor $x^2 + 6x - 16$.

In this trinomial, b = 6 and c = -16. This means m + n is positive and mn is negative. Make a list of the factors of -16, where one factor of each pair is positive.

Factors of -16	Sum of Factors
1, -16	-15
-1, 16	15
2, -8	-6
-2, 8	6

Therefore,
$$m = -2$$
 and $n = 8$.
 $x^2 + 6x - 16 = (x - 2)(x + 8)$

Exercises

Factor each trinomial.

$$1. x^2 + 4x + 3$$

$$2. m^2 + 12m + 32$$

$$3, r^2 - 3r + 2$$

$$4.x^2 - x - 6$$

5.
$$x^2 - 4x - 21$$

6.
$$x^2 - 22x + 121$$

$$7.c^2 - 4c - 12$$

8.
$$p^2 - 16p + 64$$

$$9.9 - 10x + x^2$$

10.
$$x^2 + 6x + 5$$

11.
$$a^2 + 8a - 9$$

12.
$$y^2 - 7y - 8$$

13.
$$x^2 - 2x - 3$$

14.
$$y^2 + 14y + 13$$

15.
$$m^2 + 9m + 20$$

16.
$$x^2 + 12x + 20$$

17.
$$a^2 - 14a + 24$$

18.
$$18 + 11y + y^2$$

19.
$$x^2 + 2xy + y^2$$

20.
$$a^2 - 4ab + 4b^2$$

$$21. x^2 + 6xy - 7y^2$$