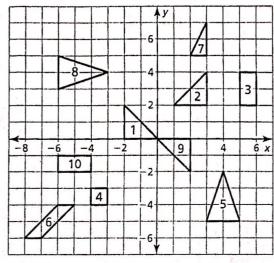
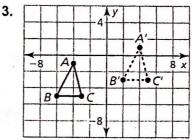
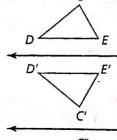

4.4


Practice A

In Exercises 1 and 2, identify any congruent figures in the coordinate plane. Explain.



In Exercises 3 and 4, describe a congruence transformation that maps △ABC to △A'B'C'.



In Exercises 5 and 6, determine whether the polygons with the given vertices are congruent. Use transformations to explain your reasoning.

5.
$$A(5, 2)$$
, $B(2, 2)$, $C(2, 7)$ and $S(-4, -5)$, $T(-1, -5)$, $U(-1, 0)$

6.
$$E(6, -2)$$
, $F(10, -2)$, $G(10, -8)$, $H(6, -8)$ and $W(4, 8)$, $X(4, 10)$, $Y(8, 10)$, $Z(8, 8)$

7. In the figure, $a \parallel b$, $\triangle CDE$ is reflected in line a, and $\triangle C'D'E'$ is reflected in line b. List three pairs of segments that are parallel to each other. Then determine whether any segments are congruent to $\overline{EE''}$.

- **8.** $\triangle A$ is reflected in line s to form $\triangle A'$ and then reflected in line t to form $\Delta A''$. Draw line t and intermediate $\Delta A'$ to complete the figure that represents these transformations.
- 9. Your friend claims that if you have a series of many parallel lines, reflecting a figure in two of the lines will produce the same result as reflecting the image in four or six of the lines. Is your friend correct? Explain your reasoning.

