das	
angle of rotation Chapter 4 (p. 190)	center of dilation Chapter 4 (p. 208)
center of rotation Chapter 4 (p. 190)	center of symmetry Chapter 4 (p. 193)
component form Chapter 4 (p. 174)	composition of transformations Chapter 4 (p. 176)
congruence transformation Chapter 4 (p. 201)	congruent figures Chapter 4 (p. 200)

The fixed point in a dilation	The angle that is formed by rays drawn from the center of rotation to a point and its image
The center of rotation in a figure that has rotational symmetry The parallelogram has rotational symmetry. The center is the intersection of the diagonals. A 180° rotation about the center maps the parallelogram onto itself.	The fixed point in a rotation
The combination of two or more transformations to form a single transformation A glide reflection is an example of a composition of transformations.	A form of a vector that combines the horizontal and vertical components The component form of $\overline{P Q}$ is $\langle 4,2\rangle$.
Geometric figures that have the same size and shape $\triangle A B C \cong \triangle D E F$	A transformation that preserves length and angle measure Translations, reflections, and rotations are three types of congruence transformations.

lary Flash Cards	
dilation	enlargement
Chapter 4 (p.208)	Chapter 4 (p.208)
glide reflection	horizontal component
Chapter 4 (p. 184)	Chapter 4 (p. 174)
image	initial point
Chapter 4 (p.174)	Chapter 4 (p. 174)
line of reflectionChapter 4 (p.182)	line symmetry
	Chapter 4 (p.185)

A dilation in which the scale factor is greater than 1

A dilation with a scale factor of 2 is an enlargement.

A transformation in which a figure is enlarged or reduced with respect to a fixed point

Scale factor of dilation is $\frac{C P^{\prime}}{C P}$.

A transformation involving a translation followed by a reflection

A figure that results from the transformation of a geometric figure

$A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is the image of $A B C D$ after a translation.

A line that acts as a mirror for a reflection

$\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a reflection in the line m.

culary Flash Cards	
line of symmetryChapter 4(p.185)	preimage
	Chapter 4 (p.174)
reduction	reflection
Chapter 4 (p.208)	Chapter 4 (p.182)
rigid motion	rotation
Chapter 4 (p.176)	Chapter 4 (p.190)
rotational symmetryChapter 4 (p. 193)	scale factor
	Chapter 4 (p.208)

The original figure before a transformation

$A B C D$ is the preimage and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is the image after a translation.

A transformation that uses a line like a mirror to reflect a figure

$\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a reflection in the line m.

A transformation in which a figure is turned about a fixed point

The ratio of the lengths of the corresponding sides of the image and the preimage of a dilation

Scale factor of dilation is $\frac{C P^{\prime}}{C P}$.

A line of reflection that maps a figure onto itself

Two lines of symmetry

A dilation in which the scale factor is greater than 0 and less than 1

A dilation with a scale factor of $\frac{1}{2}$ is a reduction.

A transformation that preserves length and angle measure

Translations, reflections, and rotations are three types of rigid motions.

A figure has rotational symmetry when the figure can be mapped onto itself by a rotation of 180° or less about the center of the figure.

The parallelogram has rotational symmetry. The center is the intersection of the diagonals.
A 180° rotation about the center maps the parallelogram
 onto itself.

Vocabulary Flash Cards

A dilation or a composition of rigid motions and dilations

$\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is the image of $\triangle A B C$ after a similarity transformation.

Geometric figures that have the same shape, but not necessarily the same size

Trapezoid $P Q R S$ is similar to trapezoid $W X Y Z$.

A function that moves or changes a figure in some way to produce a new figure

Four basic transformations are translations, reflections, rotations, and dilations.

The ending point of a vector

Point K is the terminal point of $\overline{J K}$.

A quantity that has both direction and magnitude, and is represented in the coordinate plane by an arrow drawn from one point to another

$\overline{J K}$ with initial point J and terminal point K.

A transformation that moves every point of a figure the same distance in the same direction

$\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a translation.

The vertical change from the starting point of a vector to the ending point

