lary Flash Cards	
acute angleChapter 1 (p. 39)	adjacent angles
	Chapter 1 (p.48)
angle	angle bisector
Chapter 1 (p .38)	Chapter 1 (p.42)
axiom	between
Chapter 1 (p.12)	Chapter 1 (p.14)
collinear points	complementary angles
Chapter 1 (p. 4)	Chapter 1 (p. 48)

Two angles that share a common vertex and side, but have no common interior points

$\angle 5$ and $\angle 6$ are adjacent angles.

A ray that divides an angle into two angles that are congruent

$\overrightarrow{Y W}$ bisects $\angle X Y Z$, so $\angle X Y W \cong \angle Z Y W$.

When three points are collinear, one point is between the other two.

Point B is between points A and C.

Two angles whose measures have a sum of 90°

$\angle B A C$ and $\angle C A B$ are complementary angles.

ulary Flash Cards	
congruent angles	congruent segments
Chapter 1 (p. 40)	Chapter 1 (p. 13)
construction	coordinate
Chapter 1 (p.13)	Chapter 1 (p.12)
coplanar points	defined terms
Chapter 1 (p.4)	Chapter 1 (p.5)
distance	endpoints
Chapter 1 (p.12)	Chapter 1 (p.5)

Line segments that have the same length

Vocabulary Flash Cards

The region that contains all the points between the sides of an angle	The region that contains all the points outside of an angle exterior
A line has one dimension. It is represented by a line with two arrowheads, but it extends without end. line ℓ, line $A B(\overleftrightarrow{A B})$, or line $B A(\overrightarrow{B A})$	The set of points two or more geometric figures have in common The intersection of two different lines is a point.
Two adjacent angles whose noncommon sides are opposite rays	Consists of two endpoints and all the points between them
The point that divides a segment into two congruent segments M is the midpoint of $\overline{A B}$. So, $\overline{A M} \cong \overline{M B}$ and $A M=M B$.	The absolute value of the difference between the real numbers matched with the two rays that form the angle on a protractor $m \angle A O B=140^{\circ}$

y Flash Cards	
obtuse angle	opposite rays
Chapter 1 (p. 39)	Chapter 1 (p. 5)
plane	point
Chapter 1 (p.4)	Chapter 1 (p. 4)
postulate	ray
Chapter 1 (p.12)	Chapter 1 (p. 5)
right angle	segment
Chapter 1 (p. 39)	Chapter 1 (p.5)

If point C lies on $\overrightarrow{A B}$ between A and B, then $\overrightarrow{C A}$ and $\overrightarrow{C B}$ are opposite rays.

$\overrightarrow{C A}$ and $\overrightarrow{C B}$ are opposite rays.

An angle that has a measure greater than 90° and less than 180°

A flat surface made up of points that has two dimensions and extends without end, and is represented by a shape that looks like a floor or a wall

plane M, or plane $A B C$
$\overrightarrow{A B}$ is a ray if it consists of the endpoint A and all points on $\overrightarrow{A B}$ that lie on the same side of A as B.

$\overrightarrow{A B}$

Consists of two endpoints and all the points between them

An angle that has a measure of 90°

ulary Flash Cards	
segment bisector	sides of an angle
Chapter 1 (p. 20)	Chapter 1 (p. 38)
straight angle	supplementary angles
Chapter 1 (p. 39)	Chapter 1 (p. 48)
undefined terms	vertex of an angle
Chapter 1 (p.4)	Chapter 1 (p. 38)
vertical angles	
Chapter 1 (p. 50)	

The rays of an angle

