
The point of concurrency of the three medians of a
triangle
The perpendicular segment from a vertex of a
triangle to the opposite side or to the line that
contains the opposite side
intersect in the same point

The point of concurrency of the angle bisectors of a triangle

P is the incenter of $\triangle A B C$.

A point is equidistant from two figures when it is the same distance from each figure.

X is equidistant from Y and Z.

A segment from a vertex of a triangle to the midpoint of the opposite side

A style of proof in which you temporarily assume that the desired conclusion is false, then reason logically to a contradiction

This proves that the original statement is true.

$\overline{B D}$ is a median of $\triangle A B C$.

Vocabulary Flash Cards

The point of concurrency of the lines containing the altitudes of a triangle

G is the orthocenter of $\triangle A B C$.

A segment that connects the midpoints of two sides of a triangle

The midsegments of $\triangle A B C$ are $\overline{M P}, \overline{M N}$, and $\overline{N P}$.

The point of intersection of concurrent lines, rays, or segments

P is the point of concurrency for lines j, k, and ℓ.

