Vocabulary	
base angles of an isosceles triangle Chapter 5 (p. 252)	base of an isosceles triangle Chapter 5 (p. 252)
coordinate proof Chapter 5 (p. 284)	corollary to a theorem Chapter 5 (p. 235)
corresponding parts Chapter 5 (p. 240)	exterior angles Chapter 5 (p. 233)
hypotenuse	interior angles
Chapter 5 (p.264)	Chapter 5 (p. 233)

Vocabulary Flash Cards

The side of an isosceles triangle that is not one of the legs	The two angles adjacent to the base of an isosceles triangle
A statement that can be proved easily using the theorem The Corollary to the Triangle Sum Theorem states that the acute angles of a right triangle are complementary.	A style of proof that involves placing geometric figures in a coordinate plane
Angles that form linear pairs with the interior angles of a polygon	A pair of sides or angles that have the same relative position in two congruent figures Corresponding angles $\angle A \cong \angle D, \angle B \cong \angle E, \angle C \cong \angle F$ Corresponding sides $\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}, \overline{A C} \cong \overline{D F}$
Angles of a polygon	The side opposite the right angle of a right triangle

Vocabulary Flash Cards

The sides adjacent to the right angle of a right triangle

The two congruent sides of an isosceles triangle

The angle formed by the legs of an isosceles triangle

