biconditional statement	conclusion
Chapter 2 (p. 69)	Chapter 2 (p. 66)
conditional statement	conjecture
Chapter 2 (p. 66)	Chapter 2 (p. 76)
contrapositive	Converse
Chapter 2 (p. 67)	Chapter 2 (p. 67)
counterexample	deductive reasoning
Chapter 2 (p. 07)	Chapter 2 (p. 78)

Vocabulary Flash Cards

Г

The "then" part of a conditional statement written	A statement that contains the phrase "if and only
in if-then form	if"
If you are in Houston, then you are in Texas.	Two lines intersect to form a right angle if and
hypothesis, p conclusion, q	only if they are perpendicular lines.
An unproven statement that is based on observations Conjecture: The sum of any three consecutive integers is three times the second number.	A logical statement that has a hypothesis and a conclusion If you are in Houston, then you are in Texas. hypothesis, p conclusion, q
The statement formed by exchanging the	The statement formed by negating both the
hypothesis and conclusion of a conditional	hypothesis and conclusion of the converse of a
statement	conditional statement
Statement: If you are a guitar player, then you are a	Statement: If you are a guitar player, then you are a
musician.	musician.
Converse: If you are a musician, then you are a	Contrapositive: If you are not a musician, then you
guitar player.	are not a guitar player.
A process that uses facts, definitions, accepted	A specific case for which a conjecture is false
properties, and the laws of logic to form a logical	Conjecture: The sum of two numbers is always
argument	more than the greater number.
You use deductive reasoning to write geometric	Counterexample: $-2 + (-3) = -5$
proofs.	$-5 \not> -2$

equivalent statements	flowchart proof (flow proof)
<i>Chapter 2 (p. 67)</i>	Chapter 2 (p. 106)
hypothesis	if-then form
Chapter 2 (p. 66)	<i>Chapter 2 (p. 66)</i>
inductive reasoning	inverse
<i>Chapter 2 (p. 76)</i>	<i>Chapter 2 (p. 67)</i>
line perpendicular to a plane Chapter 2 (p. 86)	negation Chapter 2 (p. 66)

Vocabulary Flash Cards

Г

A type of proof that uses boxes and arrows to show the flow of a logical argument	Two related conditional statements that are both true or both false A conditional statement and its contrapositive are equivalent statements
A conditional statement in the form "if p , then q ", where the "if" part contains the hypothesis and the "then" part contains the conclusion If you are in Houston, then you are in Texas. hypothesis, p conclusion, q	The "if" part of a conditional statement written in if-then form If you are in Houston, then you are in Texas. hypothesis, p conclusion, q
The statement formed by negating both the hypothesis and conclusion of a conditional statement Statement: If you are a guitar player, then you are a musician. Inverse: If you are not a guitar player, then you are not a musician.	A process that includes looking for patterns and making conjectures Given the number pattern 1, 5, 9, 13,, you can use inductive reasoning to determine that the next number in the pattern is 17.
The opposite of a statement If a statement is <i>p</i> , then the negation is "not <i>p</i> ," written ~ <i>p</i> . Statement: The ball is red. Negation: The ball is <i>not</i> red.	A line that intersects the plane in a point and is perpendicular to every line in the plane that intersects it at that point t f f f f f f f f f f

paragraph proof	perpendicular lines
Chapter 2 (p. 108)	<i>Chapter 2 (p. 68)</i>
proof	theorem
Chapter 2 (p. 100)	Chapter 2 (p. 101)
truth table	truth value
<i>Chapter 2 (p. 70)</i>	<i>Chapter 2 (p. 70)</i>
two column proof	
Chapter 2 (p. 100)	Pig Ideas Math Geometry

Vocabulary Flash Cards

Two lines that intersect to form a right angle $\downarrow l$	A style of proof that presents the statements and reasons as sentences in a paragraph, using words to explain the logical flow of an argument
A statement that can be proven Vertical angles are congruent.	A logical argument that uses deductive reasoning to show that a statement is true
A value that represents whether a statement is true (T) or false (F) <i>See truth table</i> .	A table that shows the truth values for a hypothesis, conclusion, and a conditional statement $ \begin{array}{c c c c c c c c c c c c c c c c c c c $
	A type of proof that has numbered statements and corresponding reasons that show an argument in a logical order